lv_micropython/ports/rp2/machine_spi.c

499 lines
18 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
2025-10-10 14:22:23 +08:00
#include "py/gc.h"
#include "py/mphal.h"
#include "py/mperrno.h"
2025-09-20 14:11:34 +08:00
#include "shared/runtime/mpirq.h"
#include "extmod/modmachine.h"
#include "hardware/spi.h"
#include "hardware/dma.h"
2025-10-13 16:04:13 +08:00
#define DEFAULT_SPI_BAUDRATE (1000000)
#define DEFAULT_SPI_POLARITY (0)
#define DEFAULT_SPI_PHASE (0)
#define DEFAULT_SPI_BITS (8)
#define DEFAULT_SPI_FIRSTBIT (SPI_MSB_FIRST)
#ifdef MICROPY_HW_SPI_NO_DEFAULT_PINS
// With no default SPI, need to require the pin args.
2025-10-13 16:04:13 +08:00
#define MICROPY_HW_SPI0_SCK (0)
#define MICROPY_HW_SPI0_MOSI (0)
#define MICROPY_HW_SPI0_MISO (0)
#define MICROPY_HW_SPI1_SCK (0)
#define MICROPY_HW_SPI1_MOSI (0)
#define MICROPY_HW_SPI1_MISO (0)
#define MICROPY_SPI_PINS_ARG_OPTS MP_ARG_REQUIRED
#else
// Most boards do not require pin args.
#define MICROPY_SPI_PINS_ARG_OPTS 0
#ifndef MICROPY_HW_SPI0_SCK
#if PICO_DEFAULT_SPI == 0
2025-10-13 16:04:13 +08:00
#define MICROPY_HW_SPI0_SCK (PICO_DEFAULT_SPI_SCK_PIN)
#define MICROPY_HW_SPI0_MOSI (PICO_DEFAULT_SPI_TX_PIN)
#define MICROPY_HW_SPI0_MISO (PICO_DEFAULT_SPI_RX_PIN)
#else
2025-10-13 16:04:13 +08:00
#define MICROPY_HW_SPI0_SCK (6)
#define MICROPY_HW_SPI0_MOSI (7)
#define MICROPY_HW_SPI0_MISO (4)
#endif
#endif
#ifndef MICROPY_HW_SPI1_SCK
#if PICO_DEFAULT_SPI == 1
2025-10-13 16:04:13 +08:00
#define MICROPY_HW_SPI1_SCK (PICO_DEFAULT_SPI_SCK_PIN)
#define MICROPY_HW_SPI1_MOSI (PICO_DEFAULT_SPI_TX_PIN)
#define MICROPY_HW_SPI1_MISO (PICO_DEFAULT_SPI_RX_PIN)
#else
2025-10-13 16:04:13 +08:00
#define MICROPY_HW_SPI1_SCK (10)
#define MICROPY_HW_SPI1_MOSI (11)
#define MICROPY_HW_SPI1_MISO (8)
#endif
#endif
#endif
// SPI0 can be GP{0..7,16..23}, SPI1 can be GP{8..15,24..29}.
2025-10-13 16:04:13 +08:00
#define IS_VALID_PERIPH(spi, pin) ((((pin) & 8) >> 3) == (spi))
// GP{2,6,10,14,...}
2025-10-13 16:04:13 +08:00
#define IS_VALID_SCK(spi, pin) (((pin) & 3) == 2 && IS_VALID_PERIPH(spi, pin))
// GP{3,7,11,15,...}
2025-10-13 16:04:13 +08:00
#define IS_VALID_MOSI(spi, pin) (((pin) & 3) == 3 && IS_VALID_PERIPH(spi, pin))
// GP{0,4,8,10,...}
2025-10-13 16:04:13 +08:00
#define IS_VALID_MISO(spi, pin) (((pin) & 3) == 0 && IS_VALID_PERIPH(spi, pin))
2025-10-13 16:04:13 +08:00
typedef struct _machine_spi_obj_t {
mp_obj_base_t base;
spi_inst_t *const spi_inst;
uint8_t spi_id;
uint8_t polarity;
uint8_t phase;
uint8_t bits;
uint8_t firstbit;
uint8_t sck;
uint8_t mosi;
uint8_t miso;
uint32_t baudrate;
int chan_tx;
int chan_rx;
2025-09-20 14:11:34 +08:00
// 这里只为屏幕设置了tx中断用来控制cs引脚和lv.disp_flush_ready()
mp_irq_obj_t *tx_isr_obj;
} machine_spi_obj_t;
2024-02-27 15:32:29 +11:00
static machine_spi_obj_t machine_spi_obj[] = {
{
2025-10-13 16:04:13 +08:00
{&machine_spi_type}, spi0, 0,
DEFAULT_SPI_POLARITY, DEFAULT_SPI_PHASE, DEFAULT_SPI_BITS, DEFAULT_SPI_FIRSTBIT,
MICROPY_HW_SPI0_SCK, MICROPY_HW_SPI0_MOSI, MICROPY_HW_SPI0_MISO,
0,
// DMA channels, -1 means not claimed
-1,
-1,
2025-09-20 14:11:34 +08:00
NULL
},
{
2025-10-13 16:04:13 +08:00
{&machine_spi_type}, spi1, 1,
DEFAULT_SPI_POLARITY, DEFAULT_SPI_PHASE, DEFAULT_SPI_BITS, DEFAULT_SPI_FIRSTBIT,
MICROPY_HW_SPI1_SCK, MICROPY_HW_SPI1_MOSI, MICROPY_HW_SPI1_MISO,
0,
// DMA channels, -1 means not claimed
-1,
-1,
2025-09-20 14:11:34 +08:00
NULL
},
};
2025-10-13 16:04:13 +08:00
static void machine_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "SPI(%u, baudrate=%u, polarity=%u, phase=%u, bits=%u, sck=%u, mosi=%u, miso=%u)",
2025-10-13 16:04:13 +08:00
self->spi_id, self->baudrate, self->polarity, self->phase, self->bits,
self->sck, self->mosi, self->miso);
}
2025-10-13 16:04:13 +08:00
mp_obj_t machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
2025-10-13 16:04:13 +08:00
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = DEFAULT_SPI_BAUDRATE} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_POLARITY} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_PHASE} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_BITS} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_FIRSTBIT} },
{ MP_QSTR_sck, MICROPY_SPI_PINS_ARG_OPTS | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_mosi, MICROPY_SPI_PINS_ARG_OPTS | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_miso, MICROPY_SPI_PINS_ARG_OPTS | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get the SPI bus id.
int spi_id = mp_obj_get_int(args[ARG_id].u_obj);
2025-10-13 16:04:13 +08:00
if (spi_id < 0 || spi_id >= MP_ARRAY_SIZE(machine_spi_obj)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) doesn't exist"), spi_id);
}
// Get static peripheral object.
machine_spi_obj_t *self = (machine_spi_obj_t *)&machine_spi_obj[spi_id];
// Set SCK/MOSI/MISO pins if configured.
2025-10-13 16:04:13 +08:00
if (args[ARG_sck].u_obj != mp_const_none) {
int sck = mp_hal_get_pin_obj(args[ARG_sck].u_obj);
2025-10-13 16:04:13 +08:00
if (!IS_VALID_SCK(self->spi_id, sck)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad SCK pin"));
}
self->sck = sck;
}
2025-10-13 16:04:13 +08:00
if (args[ARG_mosi].u_obj != mp_const_none) {
int mosi = mp_hal_get_pin_obj(args[ARG_mosi].u_obj);
2025-10-13 16:04:13 +08:00
if (!IS_VALID_MOSI(self->spi_id, mosi)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad MOSI pin"));
}
self->mosi = mosi;
if (self->chan_tx < 0)
self->chan_tx = dma_claim_unused_channel(true);
}
2025-10-13 16:04:13 +08:00
if (args[ARG_miso].u_obj != mp_const_none) {
int miso = mp_hal_get_pin_obj(args[ARG_miso].u_obj);
2025-10-13 16:04:13 +08:00
if (!IS_VALID_MISO(self->spi_id, miso)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad MISO pin"));
}
self->miso = miso;
if (self->chan_rx < 0)
self->chan_rx = dma_claim_unused_channel(true);
}
// Initialise the SPI peripheral if any arguments given, or it was not initialised previously.
2025-10-13 16:04:13 +08:00
if (n_args > 1 || n_kw > 0 || self->baudrate == 0) {
self->baudrate = args[ARG_baudrate].u_int;
self->polarity = args[ARG_polarity].u_int;
self->phase = args[ARG_phase].u_int;
self->bits = args[ARG_bits].u_int;
self->firstbit = args[ARG_firstbit].u_int;
2025-10-13 16:04:13 +08:00
if (self->firstbit == SPI_LSB_FIRST) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("LSB"));
}
spi_init(self->spi_inst, self->baudrate);
self->baudrate = spi_set_baudrate(self->spi_inst, self->baudrate);
spi_set_format(self->spi_inst, self->bits, self->polarity, self->phase, self->firstbit);
gpio_set_function(self->sck, GPIO_FUNC_SPI);
gpio_set_function(self->miso, GPIO_FUNC_SPI);
gpio_set_function(self->mosi, GPIO_FUNC_SPI);
}
return MP_OBJ_FROM_PTR(self);
}
2025-10-13 16:04:13 +08:00
static void machine_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit };
static const mp_arg_t allowed_args[] = {
2025-10-13 16:04:13 +08:00
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// Parse the arguments.
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Reconfigure the baudrate if requested.
2025-10-13 16:04:13 +08:00
if (args[ARG_baudrate].u_int != -1) {
self->baudrate = spi_set_baudrate(self->spi_inst, args[ARG_baudrate].u_int);
}
// Reconfigure the format if requested.
bool set_format = false;
2025-10-13 16:04:13 +08:00
if (args[ARG_polarity].u_int != -1) {
self->polarity = args[ARG_polarity].u_int;
set_format = true;
}
2025-10-13 16:04:13 +08:00
if (args[ARG_phase].u_int != -1) {
self->phase = args[ARG_phase].u_int;
set_format = true;
}
2025-10-13 16:04:13 +08:00
if (args[ARG_bits].u_int != -1) {
self->bits = args[ARG_bits].u_int;
set_format = true;
}
2025-10-13 16:04:13 +08:00
if (args[ARG_firstbit].u_int != -1) {
self->firstbit = args[ARG_firstbit].u_int;
if (self->firstbit == SPI_LSB_FIRST)
{
mp_raise_NotImplementedError(MP_ERROR_TEXT("LSB"));
}
}
2025-10-13 16:04:13 +08:00
if (self->miso > 0 && self->chan_rx < 0) {
self->chan_rx = dma_claim_unused_channel(true);
}
2025-10-13 16:04:13 +08:00
if (self->mosi > 0 && self->chan_tx < 0) {
self->chan_tx = dma_claim_unused_channel(true);
}
2025-10-13 16:04:13 +08:00
if (set_format) {
spi_set_format(self->spi_inst, self->bits, self->polarity, self->phase, self->firstbit);
}
}
2025-09-20 14:11:34 +08:00
static void machine_spi0_tx_irq_handler(void)
{
// currently only used for spi0
2025-10-10 14:22:23 +08:00
// mp_printf(&mp_plat_print, "program running isr spi0 tx irq %d\n", __LINE__);
2025-09-20 14:11:34 +08:00
machine_spi_obj_t *self = &machine_spi_obj[0];
spi_hw_t *spi_hw = spi_get_hw(self->spi_inst);
// clear the interrupt flag
spi_hw->imsc &= ~(1 << 3);
// 检查是否是发送FIFO中断已屏蔽的中断
// if (spi_hw->mis & (1 << 3)) { // TXMIS=1
// 确认发送真正完成发送FIFO为空且SPI不忙
// mp_raise_msg_varg(&mp_type_AssertionError, MP_ERROR_TEXT("IRQ triggered"));
if ((spi_hw->sr & (1 << 0)) && !(spi_hw->sr & (1 << 4)) && dma_channel_is_busy(self->chan_tx) == false) {
if (self->tx_isr_obj != NULL && self->tx_isr_obj->handler != mp_const_none)
{
2025-10-10 14:22:23 +08:00
// mp_printf(&mp_plat_print, "program running isr spi0 tx irq %d\n", __LINE__);
if(self->tx_isr_obj->ishard){
// mp_sched_lock();
// gc_lock();
mp_call_function_1(self->tx_isr_obj->handler, self->tx_isr_obj->parent);
// gc_unlock();
// mp_sched_unlock();
} else {
mp_irq_handler(self->tx_isr_obj);
}
2025-09-20 14:11:34 +08:00
}
}
// }
}
static void machine_spi1_tx_irq_handler(void)
{
// currently not used
machine_spi_obj_t *self = &machine_spi_obj[1];
spi_hw_t *spi_hw = spi_get_hw(self->spi_inst);
// clear the interrupt flag
spi_hw->imsc &= ~(1 << 3);
if (spi_hw->mis & (1 << 3)) { // TXMIS=1
// 确认发送真正完成发送FIFO为空且SPI不忙
if ((spi_hw->sr & (1 << 0)) && !(spi_hw->sr & (1 << 4))) {
if (self->tx_isr_obj != NULL && self->tx_isr_obj->handler != mp_const_none)
{
mp_irq_handler(self->tx_isr_obj);
}
}
}
}
static void machine_spi_set_tx_isr(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
{
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
if (self->tx_isr_obj == NULL) {
self->tx_isr_obj = m_new_obj(mp_irq_obj_t);
// MP_STATE_PORT(rp2_uart_irq_obj)[self->uart_id] = self->mp_irq_obj;
}
enum
{
ARG_tx_isr,
2025-10-10 14:22:23 +08:00
ARG_hard
2025-09-20 14:11:34 +08:00
};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_tx_isr, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none}},
2025-10-10 14:22:23 +08:00
{ MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} },
2025-09-20 14:11:34 +08:00
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (n_args < 1) {
mp_raise_ValueError(MP_ERROR_TEXT("missing tx_isr"));
}
mp_obj_t handler = args[ARG_tx_isr].u_obj;
if (handler == mp_const_none || !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("handler must be callable"));
}
if (self->tx_isr_obj == NULL) {
// disable previous irq
}
irq_set_enabled(self->spi_id == 0 ? SPI0_IRQ : SPI1_IRQ, false);
self->tx_isr_obj->handler = handler;
// self->tx_isr_obj->base.type = &mp_type_irq;
// self->tx_isr_obj->methods = &mp_irq_methods;
2025-10-10 14:22:23 +08:00
self->tx_isr_obj->ishard = args[ARG_hard].u_bool;
2025-09-20 14:11:34 +08:00
self->tx_isr_obj->parent = MP_OBJ_FROM_PTR(self);
2025-10-10 14:22:23 +08:00
2025-09-20 14:11:34 +08:00
irq_set_exclusive_handler(self->spi_id == 0 ? SPI0_IRQ : SPI1_IRQ, self->spi_id == 0 ? machine_spi0_tx_irq_handler : machine_spi1_tx_irq_handler);
spi_hw_t *spi_hw = spi_get_hw(self->spi_inst);
spi_hw->imsc |= (1 << 3);
irq_set_enabled(self->spi_id == 0 ? SPI0_IRQ : SPI1_IRQ, true);
}
static void machine_spi_wait_done(mp_obj_base_t *self_in)
{
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
int chan_tx = self->chan_tx;
int chan_rx = self->chan_rx;
if (chan_rx >= 0)
dma_channel_wait_for_finish_blocking(chan_rx);
if (chan_tx >= 0)
dma_channel_wait_for_finish_blocking(chan_tx);
spi_hw_t *spi_hw = spi_get_hw(self->spi_inst);
while (!((spi_hw->sr & (1 << 0)) && !(spi_hw->sr & (1 << 4)))) {
// wait for TX FIFO to be empty and SPI not busy
}
}
2025-10-13 16:04:13 +08:00
static void machine_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
2025-09-20 14:11:34 +08:00
bool write_only = dest == NULL;
const size_t dma_min_size_threshold = 8;
if (len <= dma_min_size_threshold){
// Use software for small transfers
if (write_only) {
spi_write_blocking(self->spi_inst, src, len);
} else {
spi_write_read_blocking(self->spi_inst, src, dest, len);
}
return;
}
// Use DMA for large transfers if channels are available
int chan_tx = self->chan_tx;
int chan_rx = self->chan_rx;
if (chan_rx < 0 && chan_tx < 0)
{
mp_raise_msg_varg(&mp_type_RuntimeError, MP_ERROR_TEXT("Error when using DMA, chan rx: %d, chan tx: %d"), chan_rx, chan_tx);
return;
}
2025-09-20 14:11:34 +08:00
// if (chan_rx >= 0)
// dma_channel_wait_for_finish_blocking(chan_rx);
// if (chan_tx >= 0)
// dma_channel_wait_for_finish_blocking(chan_tx);
machine_spi_wait_done(self_in);
// bool use_dma = chan_rx >= 0 && chan_tx >= 0;
// note src is guaranteed to be non-NULL
uint8_t dev_null;
dma_channel_config c;
if (chan_tx >= 0)
{
c = dma_channel_get_default_config(chan_tx);
channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
channel_config_set_dreq(&c, spi_get_index(self->spi_inst) ? DREQ_SPI1_TX : DREQ_SPI0_TX);
dma_channel_configure(chan_tx, &c,
&spi_get_hw(self->spi_inst)->dr,
src,
len,
true);
}
if (chan_rx >= 0)
{
c = dma_channel_get_default_config(chan_rx);
channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
channel_config_set_dreq(&c, spi_get_index(self->spi_inst) ? DREQ_SPI1_RX : DREQ_SPI0_RX);
channel_config_set_read_increment(&c, false);
channel_config_set_write_increment(&c, !write_only);
dma_channel_configure(chan_rx, &c,
write_only ? &dev_null : dest,
&spi_get_hw(self->spi_inst)->dr,
len,
true);
}
// dma_channel_wait_for_finish_blocking(chan_rx);
// dma_channel_wait_for_finish_blocking(chan_tx);
// If we have claimed only one channel successfully, we should release immediately
// if (chan_rx >= 0) {
// dma_channel_unclaim(chan_rx);
// }
// if (chan_tx >= 0) {
// dma_channel_unclaim(chan_tx);
// }
// if (!use_dma) {
// // Use software for small transfers, or if couldn't claim two DMA channels
// if (write_only) {
// spi_write_blocking(self->spi_inst, src, len);
// } else {
// spi_write_read_blocking(self->spi_inst, src, dest, len);
// }
// }
}
// Buffer protocol implementation for SPI.
// The buffer represents the SPI data FIFO.
2025-10-13 16:04:13 +08:00
static mp_int_t machine_spi_get_buffer(mp_obj_t o_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
machine_spi_obj_t *self = MP_OBJ_TO_PTR(o_in);
bufinfo->len = 4;
bufinfo->typecode = 'I';
bufinfo->buf = (void *)&spi_get_hw(self->spi_inst)->dr;
return 0;
}
2024-02-27 15:32:29 +11:00
static const mp_machine_spi_p_t machine_spi_p = {
.init = machine_spi_init,
.transfer = machine_spi_transfer,
.wait_done = machine_spi_wait_done,
2025-09-20 14:11:34 +08:00
.set_tx_isr = machine_spi_set_tx_isr,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_spi_type,
MP_QSTR_SPI,
MP_TYPE_FLAG_NONE,
make_new, machine_spi_make_new,
print, machine_spi_print,
protocol, &machine_spi_p,
buffer, machine_spi_get_buffer,
2025-10-13 16:04:13 +08:00
locals_dict, &mp_machine_spi_locals_dict
);
2025-10-13 16:04:13 +08:00
mp_obj_base_t *mp_hal_get_spi_obj(mp_obj_t o) {
if (mp_obj_is_type(o, &machine_spi_type)) {
return MP_OBJ_TO_PTR(o);
}
#if MICROPY_PY_MACHINE_SOFTSPI
2025-10-13 16:04:13 +08:00
else if (mp_obj_is_type(o, &mp_machine_soft_spi_type)) {
return MP_OBJ_TO_PTR(o);
}
#endif
2025-10-13 16:04:13 +08:00
else {
mp_raise_TypeError(MP_ERROR_TEXT("expecting an SPI object"));
}
}